Axonal topography of cortical basket cells in relation to orientation, direction, and ocular dominance maps.

نویسندگان

  • P Buzás
  • U T Eysel
  • P Adorján
  • Z F Kisvárday
چکیده

The axonal (bouton) distributions of a layer 4 clutch cell (CC), two layer 3 medium-sized basket cells (MBC), and a layer 3 large basket cell (LBC) to orientation, direction, and ocular dominance maps were studied quantitatively. 1) The CC provided exclusively local projections (<380 microm from the soma) and contacted a narrow "niche" of functional representations. 2) The two MBCs emitted local projections (75% and 79% of all boutons), which were engaged with isoorientations (61% and 48%) and isodirections, and long-range projections (25% and 21%, >313 microm and >418 microm), which encountered cross-orientation sites (14% and 12%) and isoorientation sites (7% and 5%). Their direction preferences were mainly perpendicular to or opposite those of local projections. 3) The LBC provided the majority (60%) of its boutons to long-range distances (>437 microm). Locally, LBC boutons showed a rather balanced contribution to isoorientations (19%) and cross-orientations (12%) and preferred isodirections. Remotely, however, cross-orientation sites were preferred (31% vs. 23%) and the directional output was balanced. 4) Monte Carlo simulations revealed that the differences between the orientation specificity of local and long-range projections cannot be explained by a homogeneous lateral distribution of the boutons. 5) There was a similar eye preference in the local and long-range projection fields of the MBCs. The LBC contacted both contra- and ipsilateral eye domains. 6) The basket axons showed little laminar difference in orientation and direction topography. The results suggest that an individual basket cell can mediate a wide range of effects depending on the size and termination pattern of the axonal field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topographic shear and the relation of ocular dominance columns to orientation columns in primate and cat visual cortex

Shear has been known to exist for many years in the topographic structure of the primary visual cortex, but has received little attention in the modeling literature. Although the topographic map of V1 is largely conformal (i.e. zero shear), several groups have observed topographic shear in the region of the V1/V2 border. Furthermore, shear has also been revealed by anisotropy of cortical magnif...

متن کامل

Local potential connectivity in cat primary visual cortex.

Time invariant description of synaptic connectivity in cortical circuits may be precluded by the ongoing growth and retraction of dendritic spines accompanied by the formation and elimination of synapses. On the other hand, the spatial arrangement of axonal and dendritic branches appears stable. This suggests that an invariant description of connectivity can be cast in terms of potential synaps...

متن کامل

Modeling Joint Development of Ocular Dominance and Orientation Maps in Primary Visual Cortex

We have combined earlier correlation-based models of striate ocular dominance and orientation preference map formation into a joint model. Cortical feature preferences are deened through patterns of synaptic connectivity to LGN cells which develop due to ring correlations of those LGN cells. Model parameters include spatial correlation patterns between ON-and OFF-center cells in separate eye la...

متن کامل

Development of Orientation and Ocular Dominance Columns in Infant Macaques

Maps of orientation preference and ocular dominance were recorded optically from the cortices of 5 infant macaque monkeys, ranging in age from 3.5 to 14 weeks. In agreement with previous observations, we found that basic features of orientation and ocular dominance maps, as well as correlations between them, are present and robust by 3.5 weeks of age. We did observe changes in the strength of o...

متن کامل

Maps in the brain: what can we learn from them?

In mammalian visual cortex, neurons are organized according to their functional properties into multiple maps such as retinotopic, ocular dominance, orientation preference, direction of motion, and others. What determines the organization of cortical maps? We argue that cortical maps reflect neuronal connectivity in intracortical circuits. Because connecting distant neurons requires costly wiri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 437 3  شماره 

صفحات  -

تاریخ انتشار 2001